223 research outputs found

    E-QED: Electrical Bug Localization During Post-Silicon Validation Enabled by Quick Error Detection and Formal Methods

    Full text link
    During post-silicon validation, manufactured integrated circuits are extensively tested in actual system environments to detect design bugs. Bug localization involves identification of a bug trace (a sequence of inputs that activates and detects the bug) and a hardware design block where the bug is located. Existing bug localization practices during post-silicon validation are mostly manual and ad hoc, and, hence, extremely expensive and time consuming. This is particularly true for subtle electrical bugs caused by unexpected interactions between a design and its electrical state. We present E-QED, a new approach that automatically localizes electrical bugs during post-silicon validation. Our results on the OpenSPARC T2, an open-source 500-million-transistor multicore chip design, demonstrate the effectiveness and practicality of E-QED: starting with a failed post-silicon test, in a few hours (9 hours on average) we can automatically narrow the location of the bug to (the fan-in logic cone of) a handful of candidate flip-flops (18 flip-flops on average for a design with ~ 1 Million flip-flops) and also obtain the corresponding bug trace. The area impact of E-QED is ~2.5%. In contrast, deter-mining this same information might take weeks (or even months) of mostly manual work using traditional approaches

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    Why pharmacokinetic differences among oral triptans have little clinical importance: a comment

    Get PDF
    Triptans, selective 5-HT1B/1D receptor agonists, are specific drugs for the acute treatment of migraine that have the same mechanism of action. Here, it is discussed why the differences among kinetic parameters of oral triptans have proved not to be very important in clinical practice. There are three main reasons: (1) the differences among the kinetic parameters of oral triptans are smaller than what appears from their average values; (2) there is a large inter-subject, gender-dependent, and intra-subject (outside/during the attack) variability of kinetic parameters related to the rate and extent of absorption, i.e., those which are considered as critical for the response; (3) no dose-concentration–response curves have been defined and it is, therefore, impossible both to compare the kinetics of triptans, and to verify the objective importance of kinetic differences; (4) the importance of kinetic differences is outweighed by non-kinetic factors of variability of response to triptans. If no oral formulations are found that can allow more predictable pharmacokinetics, the same problems will probably also arise with new classes of drugs for the acute treatment of migraine

    Predicting Unobserved Phenotypes for Complex Traits from Whole-Genome SNP Data

    Get PDF
    Genome-wide association studies (GWAS) for quantitative traits and disease in humans and other species have shown that there are many loci that contribute to the observed resemblance between relatives. GWAS to date have mostly focussed on discovery of genes or regulatory regions habouring causative polymorphisms, using single SNP analyses and setting stringent type-I error rates. Genome-wide marker data can also be used to predict genetic values and therefore predict phenotypes. Here, we propose a Bayesian method that utilises all marker data simultaneously to predict phenotypes. We apply the method to three traits: coat colour, %CD8 cells, and mean cell haemoglobin, measured in a heterogeneous stock mouse population. We find that a model that contains both additive and dominance effects, estimated from genome-wide marker data, is successful in predicting unobserved phenotypes and is significantly better than a prediction based upon the phenotypes of close relatives. Correlations between predicted and actual phenotypes were in the range of 0.4 to 0.9 when half of the number of families was used to estimate effects and the other half for prediction. Posterior probabilities of SNPs being associated with coat colour were high for regions that are known to contain loci for this trait. The prediction of phenotypes using large samples, high-density SNP data, and appropriate statistical methodology is feasible and can be applied in human medicine, forensics, or artificial selection programs

    Amerind Ancestry, Socioeconomic Status and the Genetics of Type 2 Diabetes in a Colombian Population

    Get PDF
    The “thrifty genotype” hypothesis proposes that the high prevalence of type 2 diabetes (T2D) in Native Americans and admixed Latin Americans has a genetic basis and reflects an evolutionary adaptation to a past low calorie/high exercise lifestyle. However, identification of the gene variants underpinning this hypothesis remains elusive. Here we assessed the role of Native American ancestry, socioeconomic status (SES) and 21 candidate gene loci in susceptibility to T2D in a sample of 876 T2D cases and 399 controls from Antioquia (Colombia). Although mean Native American ancestry is significantly higher in T2D cases than in controls (32% v 29%), this difference is confounded by the correlation of ancestry with SES, which is a stronger predictor of disease status. Nominally significant association (P<0.05) was observed for markers in: TCF7L2, RBMS1, CDKAL1, ZNF239, KCNQ1 and TCF1 and a significant bias (P<0.05) towards OR>1 was observed for markers selected from previous T2D genome-wide association studies, consistent with a role for Old World variants in susceptibility to T2D in Latin Americans. No association was found to the only known Native American-specific gene variant previously associated with T2D in a Mexican sample (rs9282541 in ABCA1). An admixture mapping scan with 1,536 ancestry informative markers (AIMs) did not identify genome regions with significant deviation of ancestry in Antioquia. Exclusion analysis indicates that this scan rules out ∼95% of the genome as harboring loci with ancestry risk ratios >1.22 (at P < 0.05)

    Significant differences in the use of healthcare resources of native-born and foreign born in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last decade, the number of foreign residents in Spain has doubled and it has become one of the countries in the European Union with the highest number of immigrants There is no doubt that the health of the immigrant population has become a relevant subject from the point of view of public healthcare. Our study aimed at describing the potential inequalities in the use of healthcare resources and in the lifestyles of the resident immigrant population of Spain.</p> <p>Methods</p> <p>Cross-sectional, epidemiological study from the Spanish National Health Survey (NHS) in 2006, from the Ministry of Health and Consumer Affairs. We have worked with individualized secondary data, collected in the Spanish National Health Survey carried out in 2006 and 2007 (SNHS-06), from the Ministry of Health and Consumer Affairs. The format of the SNHS-06 has been adapted to the requirements of the European project for the carrying out of health surveys.</p> <p>Results</p> <p>The economic immigrant population resident in Spain, present diseases that are similar to those of the indigenous population. The immigrant population shows significantly lower values in the consumption of alcohol, tobacco and physical activity (OR = 0.76; CI 95%: 0.65–0.89, they nonetheless perceive their health condition as worse than that reported by the autochthonous population (OR = 1.63, CI 95%: 1.34–1.97). The probability of the immigrant population using emergency services in the last 12 months was significantly greater than that of the autochthonous population (OR = 1.31, CI 95%: 1.12–1.54). This situation repeats itself when analyzing hospitalization data, with values of probability of being hospitalized greater among immigrants (OR = 1.39, CI 95%: 1.07–1.81).</p> <p>Conclusion</p> <p>The economic immigrants have better parameters in relation to lifestyles, but they have a poor perception of their health. Despite the fact that immigrant population shows higher percentages of emergency attendance and hospitalization than the indigenous population, with respect to the use of healthcare resources, their usage of healthcare resources such as drugs, influenza vaccinations or visits to the dentist is lower.</p

    Phenotypic and Functional Characterization of Human Mammary Stem/Progenitor Cells in Long Term Culture

    Get PDF
    Background: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. Methodology: Single cell suspensions derived from human breast `organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. Principal Findings: We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24(low)/CD44(low) phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high)/CD24(low) cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. Conclusions: Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance

    The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic chagasic cardiomyopathy is a debilitating and frequently fatal outcome of human infection with the protozoan parasite, <it>Trypanosoma cruzi</it>. Microarray analysis of gene expression during the <it>T. cruzi </it>life-cycle could be a valuable means of identifying drug and vaccine targets based on their appropriate expression patterns, but results from previous microarray studies in <it>T. cruzi </it>and related kinetoplastid parasites have suggested that the transcript abundances of most genes in these organisms do not vary significantly between life-cycle stages.</p> <p>Results</p> <p>In this study, we used whole genome, oligonucleotide microarrays to globally determine the extent to which <it>T. cruzi </it>regulates mRNA relative abundances over the course of its complete life-cycle. In contrast to previous microarray studies in kinetoplastids, we observed that relative transcript abundances for over 50% of the genes detected on the <it>T. cruzi </it>microarrays were significantly regulated during the <it>T. cruzi </it>life-cycle. The significant regulation of 25 of these genes was confirmed by quantitative reverse-transcriptase PCR (qRT-PCR). The <it>T. cruzi </it>transcriptome also mirrored published protein expression data for several functional groups. Among the differentially regulated genes were members of paralog clusters, nearly 10% of which showed divergent expression patterns between cluster members.</p> <p>Conclusion</p> <p>Taken together, these data support the conclusion that transcript abundance is an important level of gene expression regulation in <it>T. cruzi</it>. Thus, microarray analysis is a valuable screening tool for identifying stage-regulated <it>T. cruzi </it>genes and metabolic pathways.</p

    Genetic Signatures of Exceptional Longevity in Humans

    Get PDF
    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity

    The Glasgow Outcome Scale -- 40 years of application and refinement

    Get PDF
    The Glasgow Outcome Scale (GOS) was first published in 1975 by Bryan Jennett and Michael Bond. With over 4,000 citations to the original paper, it is the most highly cited outcome measure in studies of brain injury and the second most-cited paper in clinical neurosurgery. The original GOS and the subsequently developed extended GOS (GOSE) are recommended by several national bodies as the outcome measure for major trauma and for head injury. The enduring appeal of the GOS is linked to its simplicity, short administration time, reliability and validity, stability, flexibility of administration (face-to-face, over the telephone and by post), cost-free availability and ease of access. These benefits apply to other derivatives of the scale, including the Glasgow Outcome at Discharge Scale (GODS) and the GOS paediatric revision. The GOS was devised to provide an overview of outcome and to focus on social recovery. Since the initial development of the GOS, there has been an increasing focus on the multidimensional nature of outcome after head injury. This Review charts the development of the GOS, its refinement and usage over the past 40 years, and considers its current and future roles in developing an understanding of brain injury
    corecore